A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide.
نویسندگان
چکیده
Geobacter metallireducens is an important model organism for many novel aspects of extracellular electron exchange and the anaerobic degradation of aromatic compounds, but studies of its physiology have been limited by a lack of techniques for gene deletion and replacement. Therefore, a genetic system was developed for G. metallireducens by making a number of modifications in the previously described approach for homologous recombination in Geobacter sulfurreducens. Critical modifications included, among others, a 3.5-fold increased in the quantity of electrotransformed linear DNA and the harvesting of cells at early-log. The Cre-lox recombination system was used to remove an antibiotic resistance cassette from the G. metallireducens chromosome permitting the generation of multiple mutations in the same strain. Deletion of the gene fliC, which encodes the flagellin protein, resulted in a strain that did not produce flagella, was non-motile, and was defective for the reduction of insoluble Fe(III). Deletion of pilA, which encodes the structural protein of the type IV pili, inhibited the production of lateral pili as well as Fe(III) oxide reduction and electron transfer to an electrode. These results demonstrate the importance of flagella and pili in the reduction of insoluble Fe(III) by G. metallireducens and provide methods for additional genetic-based approaches for the study of G. metallireducens.
منابع مشابه
Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens.
Studies with the dissimilatory Fe(III)-reducing microorganism Geobacter metallireducens demonstrated that the common technique of separating Fe(III)-reducing microorganisms and Fe(III) oxides with semipermeable membranes in order to determine whether the Fe(III) reducers release electron-shuttling compounds and/or Fe(III) chelators is invalid. This raised doubts about the mechanisms for Fe(III)...
متن کاملOuter cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.
Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, but a number of the most thoroughly studied outer surface components of G. sulfurreducens, particularly c-type cytochromes, are not well conserved among Geobacter species. In order to identify cellular components ...
متن کاملTitle: Outer Cell Surface Components Essential for Fe(III) Oxide Reduction by Geobacter
24 Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. 25 Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, 26 but a number of the most thoroughly studied outer surface components of G. sulfurreducens, 27 particularly c-type cytochromes, are not well conserved among Geobacter species. In order to 28 identify cellu...
متن کاملAnaerobic benzene oxidation by Geobacter species.
The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology reports
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2012